- topologische Mannigfaltigkeit
- топологическое многообразие
Немецко-русский математический словарь. 2013.
Немецко-русский математический словарь. 2013.
Topologische Mannigfaltigkeit — berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Mannigfaltigkeit — Die Sphäre kann mit mehreren Abbildungen „plattgedrückt“ werden. Entsprechend kann man die Erde in einem Atlas darstellen. Unter einer Mannigfaltigkeit versteht man in der Mathematik einen topologischen Raum, der lokal dem euklidischen Raum… … Deutsch Wikipedia
Mannigfaltigkeit mit Rand — Auf der linken Seite sind topologische Mannigfaltigkeiten ohne Rand und auf der rechten Seite sind solche mit Rand abgebildet. Eine Mannigfaltigkeit mit Rand ist mathematisches Objekt aus der Differentialgeometrie. Es handelt sich hierbei nicht… … Deutsch Wikipedia
Topologische Gruppe — berührt die Spezialgebiete Mathematik Topologie Gruppentheorie ist Beispiel von Gruppe topologischer Raum H Raum H Gruppe Beispiele sind rati … Deutsch Wikipedia
N-Mannigfaltigkeit — topologische Mannigfaltigkeit berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Semi-Riemannsche Mannigfaltigkeit — topologische Mannigfaltigkeit berührt die Spezialgebiete Mathematik Topologie Differentialgeometrie Physik Klassische Mechanik Grenzflächen, Membrane Allgemeine Relativitätstheorie … Deutsch Wikipedia
Topologische Dimension — In der Mathematik wird mit der Dimension ein Konzept bezeichnet, das im Wesentlichen die Anzahl der Freiheitsgrade einer Bewegung in einem bestimmten Raum bezeichnet. Inhaltsverzeichnis 1 Definitionen 1.1 Hamel Dimension 1.2 Schauder Dimension … Deutsch Wikipedia
Geschlossene Mannigfaltigkeit — Eine geschlossene Mannigfaltigkeit ist eine kompakte topologische Mannigfaltigkeit ohne Rand. Falls im Kontext eine Mannigfaltigkeit ohne Rand vorgegeben ist, so ist eine kompakte Mannigfaltigkeit automatisch eine geschlossene. Das einfachste… … Deutsch Wikipedia
Glatte Mannigfaltigkeit — In der Mathematik sind differenzierbare Mannigfaltigkeiten ein Oberbegriff für Kurven, Flächen und andere geometrische Objekte. Im Unterschied zu topologischen Mannigfaltigkeiten ist es auf differenzierbaren Mannigfaltigkeiten möglich, über… … Deutsch Wikipedia
Komplexe Mannigfaltigkeit — Komplexe Mannigfaltigkeiten sind topologische Mannigfaltigkeiten, deren Kartenwechselhomöomorphismen sogar konform sind. Diese Objekte werden in der Differentialgeometrie und der Funktionentheorie untersucht. Ihre Definition ist analog zu der… … Deutsch Wikipedia
Differenzierbare Mannigfaltigkeit — In der Mathematik sind differenzierbare Mannigfaltigkeiten ein Oberbegriff für Kurven, Flächen und andere geometrische Objekte, die – aus der Sicht der Analysis – lokal aussehen wie ein euklidischer Raum. Im Unterschied zu topologischen… … Deutsch Wikipedia